
This document will guide you how to use the MDM Bulk Publisher for Operational Cache
(OC) Technical Preview. The MDM Bulk Publisher is comprised of a single self container
docker container with all the backend services and front end user interfaces.

NOTE: Please follow this guide after following Operational Cache installation guide, as
Publisher setup will require information about OC setup.

Operating System: CentOS 7.1+/Ubuntu 18.x OR RHEL 7.1+

Docker: Docker CE 18.06+ for CentOS/Ubuntu or Docker EE 17.06+ for Redhat.

Docker-Compose: Docker Compose 1.23.x or higher.

CPU: 8 CPU or more

Memory: 16GB or more.

Disk Space: 50 GB or more.

NOTE: The amount of CPU, Memory and disk space required will be dependent on how
much data you plan to load and test with. Depending on the docker storage driver you use
you may need to increase the docker image size settings prior to starting up the container.

Docker Compose & Docker Swarm

Docker compose and swarm is used to stand up the container necessary for Publisher to
function. Configuration parameters have been hard coded based upon the compose

IBM MDM Bulk Publisher for Operational
Cache Technical Preview Documentation

Pre-Installation Requirements

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-3-2-p1_toc_2
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-1-1-p1_toc_0
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-2-1-p1_toc_1

configuration.

NOTE: We leverage the network overlay settings provided by Docker Swarm but the
Technical Preview does NOT support provisioning of a stack on a multi node Docker Swarm
setup via the docker stack deploy command. This is due to certain containers having the
requirement to be run in privileged mode which is currently not supported with
docker stack deploy .

Initialize Docker Swarm

Before we can stand up the OC environment using compose we need to initialize docker
swarm, to do so issue the following command:

docker swarm init

NOTE: Be sure to view the output of the above command to ensure it completed
successfully. If your host has multiple NICs then it will not know which to bind to and you
will need to rerun the command with an additional flag to provide that information.

Note that it is recommended to setup the MDM Publisher and Operational Cache on
different physical hosts. If you decide to install Publisher on the same machine as OC, make
sure that there is sufficient memory available for both based on requirements listed in the
OC document as well as in the Publisher document.

The mdm-publisher.bin file will be used to download MDM Publisher image.
Note: The system in which the bin file is run on must have internet access.

To run the bin make sure to give the file executable permissions. The bin is a self
extracting bundle that will execute a script that prompts you for information (including
licensing) and guides you through the installation process.

NOTE: This script must be run on the node hosting the docker containers. It also requires
access to run docker commands. Lastly, machine hosting OC containers should be live and
reachable from the machine where MDM Publisher is being installed.

Setup

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-4-3-p1_toc_3
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-5-1-p1_toc_4

Note that there are two more configuration scripts under mdm-publisher that are not run
automatically and should be run using the information below.
Please make sure to use chmod +x to make them executable prior to running them.

configure_oc_connection.sh - configures Publisher compose file to point to the
Operational Cache instance. Please make sure to have OC instance information handy in
order to complete the prompts of this script. This script will have to be executed every
time OC is deployed on a different instance.

configure_certificates.sh - configures certificate on Publisher WLP instance to
ensure secure communication to OC. Note that during this script you will be prompted
for OC information as well. This script starts up Publisher compose, and expects that OC
instance you're connecting to is also live and functional. The requirement of running and
reachable OC is there as the script will extract OC WLP certificate and import it into
Publisher as trusted. Once this script is complete, please allow Publisher container to
fully initialize, delaying any action by approximately 10 minutes. Note that you will need
to run this script every time OC instance is updated with a new certificate, as the
certificate trust between instances will need to be re-established.

Once the above actions have been completed, Publisher instance is operational and ready
to publish data into OC.

NOTE The default performance configuration of Publisher may not be suitable for large
datasets and may have to be tweaked in accordance with the Performance guidelines
below.

Modifying values of the compose configuration

If Publisher does not exclusively occupy the machine, you may want to customize the
service definition inside of the compose file to limit Publisher to a certain memory and cpu
allocation, avoiding starving other processes:

cpu_count: 8
mem_limit: 16384M

However it is recommended to deploy Publisher to a machine that is exclusive to it.

These settings will set the maximum amount of cpu and memory which can be used for
Publisher. The above values may need to be tweaked to match the hardware you're running

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-6-3-p1_toc_5

on.

Starting the stack using compose

You can stop and start Publisher container using the following compose commands.

to start
docker-compose start

to stop
docker-compose stop

You can also tear down the publisher container completely.

to tear down publisher
docker-compose down

to set it up from scratch
docker-compose up

NOTE: If you tear down the Publisher and recreate it from scratch - make sure to rerun
configure_oc_connection.sh as previous WLP certificate config will be wiped out. If that

is not done, you will experience SSL certificate errors, preventing Publisher from
functioning correctly.

Configuring Oracle connectivity (optional)

The MDM Publisher can connect to a MDM AE DB2 or Oracle database but in order to
connect to a Oracle database you will need to provide the Oracle JDBC driver JAR
ojdbc8.jar and copy it into following locations within the docker container.

1. Rename ojdbc8.jar to publisher-jdbc-jar-ojdbc8.jar :

mv ./ojdbc8.jar ./publisher-jdbc-jar-ojdbc8.jar

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-7-3-p1_toc_6
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-8-3-p1_toc_7

2. Copy the JAR into Publisher library location inside the container:

docker cp ./publisher-jdbc-jar-ojdbc8.jar compose_publisher_1:/usr/ibmp
acks/bigmatch/curre t/publisher/lib/publisher-jdbc-jar-ojdbc8.jar

3. Copy the JAR into Sqoop library location inside the container:

docker cp publisher-jdbc-jar-ojdbc8.jar compose_publisher_1:/usr/hadoop
-platform/current/sqoop/lib/publisher-jdbc-jar-ojdbc8.jar

4. Copy the JAR into Sqoop library HDFS location:

docker exec -it compose_publisher_1 hadoop fs -put /usr/hadoop-platform
/current/sqoop/lib/publisher-jdbc-jar-ojdbc8.jar /bigmatch/oozie/shared
Libraries/publisher/

5. Restart compose:

docker-compose -f <docker-compose.yml location> stop

docker-compose -f <docker-compose.yml location> start

After completing the above steps you should be able to connect to Oracle database
through Publisher UI and execute export operations.

NOTE: If you tear down the Publisher container and recreate it from scratch, you will need
to repeat the above steps to reenable Oracle export capabilities.

The MDM Publisher Docker Image Technical Preview has the same functionality as the IBM

Using MDM Publisher

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-9-1-p1_toc_8

MDM Publisher available with Entity Insight so most of the documentation referred here
https://www.ibm.com/support/knowledgecenter/en/SSWSR9_11.6.0/com.ibm.swg.im.mdmh
s.publisher.ui.doc/topics/pubui_pubui.html also applies to this Technical Preview with a few
exceptions like:
- This Technical Preview is geared towards publishing data to the Operational Cache
- Command line/advanced usage is not supported in the technical preview.

Once the Publisher container is up and running you should be able to access Publisher UI
at https://hostname:9443/publisher . You will be prompted to log in and the default
credentials are mdmadmin:mdmadmin .

Preparing a publish job

After logging in, click on Go to Job Catalog in the top right corner of the page. This will
take you to the list of currently running jobs, which should be empty if this is your first time
accessing the UI. You should be able to sort the jobs by selecting various columns in the
table.

In order to create a new job, click on New Job button in the top right corner of the screen.
You will be take to a Job wizard, which will walk you through the configuration process.

At the Configure step of the wizard, please provide the database credentials for the MDM
database you're trying to export. Once the details are complete, click on Connect button to
validate the connection. If the button has turned grey and indicates Connected! , navigate
to the top right corner of the page and click Next to proceed. Note that you can also Save
the data source for future use. If you do so, when creating a new Job, you will be presented
with a list of saved datasource, and will only have to fill in the password field to proceed.

WARNING: Since Publisher is running inside of the Docker container, any entries to the
/etc/hosts file that exist on the physical host will need to be applied to the container if

those entries are required for OC or datasource connectivity. You can modify /etc/hosts
file directly in the container, but that configuration will be reset at container restart. To
create configuration that survives restart, modify docker-compose.yml file of Publisher
and add desired mappings under extra-hosts object. That will translate into
/etc/hosts file inside of the container.

In the next screen of the Job configuration wizard, you will be asked to select data subsets
that will apply to the publish job. By selecting specific entities - you are including them into
the job. To select an entity or a sub-entity, click on it and then click Add all depending on
the context. If entity is selected, all of its sub-entities and their respective fields will be

https://www.ibm.com/support/knowledgecenter/en/SSWSR9_11.6.0/com.ibm.swg.im.mdmhs.publisher.ui.doc/topics/pubui_pubui.html
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-10-3-p1_toc_9

added. If sub-entity is selected, all of its fields will be added. Note that you can view details
of entities and sub-entities by simply clicking on them,- the corresponding details will show
up on the right page, describing what fields are included.

Once you complete your selection of data subsets, click Next to proceed.

In the following screen you will be presented with the review of all of the data subsets you
have selected as well as total counts. Please verify your selection. If a mistake is spotted,
click Previous in the top right corner of the screen to go back to the dataset selection
screen. Note that at any point during the use of the configuration wizard you can click
Cancel in the top right corner of the page to discard any configuration done so far.

Once the review is completed, click Next in the top right corner of the screen to proceed.

The last screen of the configuration of the wizard is the summary page. Here you will be
asked to name the publish job and presented with an overview. If you are ready to start the
job, click Publish in the top right corner of the screen. The job will be submitted, and you
will be take to the Job Catalog page, where you can observe the progress of the publish job
and its details. You will also be able to pause a running job by clicking Pause button, and
rerun a failed job by clicking Rerun .

Note that you can retrieve the details of the job by using Oozie, Hadoop or Spark history
consoles as outlined in the Troubleshooting section.

Once the job is completed you can navigate over to Operational Cache APIs and verify that
the data has been loaded successfully.

Troubleshooting

Error 500 in the Publisher UI

If you experience a 500 error while using Publisher UI, follow the steps below to look at
the logs:

1. Get into the Publisher container by running
docker exec -it compose_publisher_1 bash .

2. Once inside the container inspect WLP log for errors. It is located at
/var/log/bigmatch/ .

One of the common reasons you may see an error is the lack of certificate trust setup
between Operational Cache and MDM Publisher. If you see a missing certificate error,

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-11-3-p1_toc_10
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-12-4-p1_toc_11

please run the configure_oc_connection.sh mentioned in the installation section to
properly configure publisher.

Unexpected errors

To avoid any unexpected errors from Publisher, please do not start or stop any services
manually from within the container. Instead use the docker-compose commands provided
above.

Monitoring Publish jobs

Note that Publisher container exposes Oozie, Yarn resource Manager UI and Spark ports
that should help you monitor ongoing jobs and identify potential issues. You should be able
to reach them at the following ports:
- 11000 - Oozie
- 8088 - Yarn Resource Manager
- 18080 - Spark
- 19888 - Job History

Location of configuration files

The following files are used to change configuration based on the hardware allocated and
the size/complexity of the data set:

graphload_edge-template.properties
graphload_vertex-template.properties
publish-config.xml

These files are located under /usr/ibmpacks/current/bigmatch/conf/publisher inside
the container.

Note: To Get into the Publisher container, run command
docker exec -it compose_publisher_1 bash .

Working with Larger Data Sets

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-13-4-p1_toc_12
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-14-4-p1_toc_13
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-16-4-p1_toc_15
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-15-1-p1_toc_14

Examples

Following are some of the examples we have tested internally along with the details of the
hardware used and the configuration parameters.

10K Person Data Set --

Machine hardware:

VCPU count: 8
Memory: 16GB
Disk space: 1TB

Publisher configuration used:

This is the default configuration that ships with the Publisher docker image.

graphload_edge-template.properties:

graphBatchCommitSize=100

graphload_vertex-template.properties:

graphBatchCommitSize=100

publish-config.xml:

<property>
 <name>publisher.sqoop-import.args.m</name>
 <value>4</value>
</property>
<property>
 <name>publisher.subflow.prop.executorMemory</name>
 <value>1G</value>
</property>
<property>
 <name>publisher.subflow.prop.executorCores</name>
 <value>1</value>
</property>

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-17-2-p1_toc_16
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-18-4-p1_toc_17
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-19-5-p1_toc_18
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-20-5-p1_toc_19

<property>
 <name>publisher.subflow.prop.numExecutors</name>
 <value>4</value>
</property>
<property>
 <name>publisher.subflow.prop.executorMemoryOverhead</name>
 <value>256</value>
</property>
<property>
 <name>publisher.subflow.prop.driverMemory</name>
 <value>512M</value>
</property>
</property>
<property>
 <name>publisher.spark-join.opts.executor-memory</name>
 <value>1G</value>
</property>
<property>
 <name>publisher.spark-join.opts.num-executors</name>
 <value>4</value>
</property>
<property>
 <name>publisher.spark-join.optconf.spark.sql.shuffle.partitions</name>
 <value>200</value>
</property>

Total time taken to load data: 58 Minutes

NOTE: A certain overhead exists for the services that are spun up and the processes that are
started for each job. As the size of the data grows, the relative percentage of time spent on
those processes will diminish.

1M Person --

Machine hardware:

VCPU count: 8
Memory: 16GB
Disk space: 1TB

Publisher configuration:

graphload_edge-template.properties:

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-21-4-p1_toc_20
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-22-4-p1_toc_21
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-23-5-p1_toc_22
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-24-6-p1_toc_23

graphBatchCommitSize=100

graphload_vertex-template.properties:

graphBatchCommitSize=100

publish-config.xml:

<property>
 <name>publisher.sqoop-import.args.m</name>
 <value>4</value>
</property>
<property>
 <name>publisher.subflow.prop.executorMemory</name>
 <value>1G</value>
</property>
<property>
 <name>publisher.subflow.prop.executorCores</name>
 <value>1</value>
</property>
<property>
 <name>publisher.subflow.prop.numExecutors</name>
 <value>4</value>
</property>
<property>
 <name>publisher.subflow.prop.executorMemoryOverhead</name>
 <value>256</value>
</property>
<property>
 <name>publisher.subflow.prop.driverMemory</name>
 <value>512M</value>
</property>
</property>
<property>
 <name>publisher.spark-join.opts.executor-memory</name>
 <value>1500M</value>
</property>
<property>
 <name>publisher.spark-join.opts.num-executors</name>
 <value>4</value>
</property>
<property>
 <name>publisher.spark-join.optconf.spark.sql.shuffle.partitions</name>

 <value>200</value>
</property>

Total time taken to load data: 70 minutes

10M Person --

Machine resources:

VCPU count: 32
Memory: 128GB
Disk space: 1TB

Publisher configuration:

graphload_edge-template.properties:

graphBatchCommitSize=100

graphload_vertex-template.properties:

graphBatchCommitSize=100

publish-config.xml:

<property>
 <name>publisher.sqoop-import.args.m</name>
 <value>30</value>
</property>
<property>
 <name>publisher.subflow.prop.executorMemory</name>
 <value>1G</value>
</property>
<property>
 <name>publisher.subflow.prop.executorCores</name>
 <value>1</value>
</property>
<property>
 <name>publisher.subflow.prop.numExecutors</name>
 <value>30</value>

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-25-4-p1_toc_24
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-26-4-p1_toc_25
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-27-5-p1_toc_26
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-28-5-p1_toc_27

</property>
<property>
 <name>publisher.subflow.prop.executorMemoryOverhead</name>
 <value>256</value>
</property>
<property>
 <name>publisher.subflow.prop.driverMemory</name>
 <value>512M</value>
</property>
</property>
<property>
 <name>publisher.spark-join.opts.executor-memory</name>
 <value>1500M</value>
</property>
<property>
 <name>publisher.spark-join.opts.num-executors</name>
 <value>30</value>
</property>
<property>
 <name>publisher.spark-join.optconf.spark.sql.shuffle.partitions</name>
 <value>200</value>
</property>

Total time taken to load data: 105 minutes

General Performance considerations:

The overall time taken to load a data set is dependent on a combination of the
hardware being used, the configuration properties and the characteristics of a data set.
(e.g. loading a large number of relationships will take longer as compared to a person
only data set)
When using a larger dataset, you may have to adjust
publisher.spark-join.optconf.spark.sql.shuffle.partitions to a number greater

than 200 . Alternatively you can increase the amount memory per spark executor
publisher.spark-join.opts.executor-memory to be able to handle fewer partitions

that are greater in size. The ideal combination of these two parameters will vary
depending on your dataset size and hardware.

file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-29-4-p1_toc_28
file:///Users/jackson/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-30-3-p1_toc_29

